19 research outputs found

    Gene Expression and Distribution of Key Bone Turnover Markers in the Callus of Estrogen-Deficient, Vitamin D-Depleted Rats

    Get PDF
    An experimental rat model was used to test the hypothesis that in osteoporosis (OP) the molecular composition of the extracellular matrix in the fracture callus is disturbed. OP was induced at 10 weeks of age by ovariectomy and a vitamin D3-deficient diet, and sham-operated animals fed normal diet served as controls. Three months later a closed tibial fracture was made and stabilized with an intramedullary nail. After 3 and 6 weeks of healing, the animals were killed and the fracture calluses examined with global gene expression, in situ mRNA expression, and ultrastructural protein distribution of four bone turnover markers: osteopontin, bone sialoprotein, tartrate-resistant acid phosphatase, and cathepsin K. Global gene expression showed a relatively small number of differently regulated genes, mostly upregulated and at 3 weeks. The four chosen markers were not differently regulated, and only minor differences in the in situ mRNA expression and ultrastructural protein distribution were detected. Gene expression and composition of fracture calluses are not generally disturbed in experimental OP

    Hedgehog Signaling in Tumor Cells Facilitates Osteoblast-Enhanced Osteolytic Metastases

    Get PDF
    The remodeling process in bone yields numerous cytokines and chemokines that mediate crosstalk between osteoblasts and osteoclasts and also serve to attract and support metastatic tumor cells. The metastatic tumor cells disturb the equilibrium in bone that manifests as skeletal complications. The Hedgehog (Hh) pathway plays an important role in skeletogenesis. We hypothesized that the Hh pathway mediates an interaction between tumor cells and osteoblasts and influences osteoblast differentiation in response to tumor cells. We have determined that breast tumor cells have an activated Hh pathway characterized by upregulation of the ligand, IHH and transcription factor GLI1. Breast cancer cells interact with osteoblasts and cause an enhanced differentiation of pre-osteoblasts to osteoblasts that express increased levels of the osteoclastogenesis factors, RANKL and PTHrP. There is sustained expression of osteoclast-promoting factors, RANKL and PTHrP, even after the osteoblast differentiation ceases and apoptosis sets in. Moreover, tumor cells that are deficient in Hh signaling are compromised in their ability to induce osteoblast differentiation and consequently are inefficient in causing osteolysis. The stimulation of osteoblast differentiation sets the stage for osteoclast differentiation and overall promotes osteolysis. Thus, in the process of developing newer therapeutic strategies against breast cancer metastasis to bone it would worthwhile to keep in mind the role of the Hh pathway in osteoblast differentiation in an otherwise predominant osteolytic phenomenon

    Estrogen/Estrogen Receptor Alpha Signaling in Mouse Posterofrontal Cranial Suture Fusion

    Get PDF
    BACKGROUND: While premature suture fusion, or craniosynostosis, is a relatively common condition, the cause is often unknown. Estrogens are associated with growth plate fusion of endochondral bones. In the following study, we explore the previously unknown significance of estrogen/estrogen receptor signaling in cranial suture biology. METHODOLOGY/PRINCIPAL FINDINGS: Firstly, estrogen receptor (ER) expression was examined in physiologically fusing (posterofrontal) and patent (sagittal) mouse cranial sutures by quantitative RT-PCR. Next, the cranial suture phenotype of ER alpha and ER beta knockout (alphaERKO, betaERKO) mice was studied. Subsequently, mouse suture-derived mesenchymal cells (SMCs) were isolated; the effects of 17-beta estradiol or the estrogen antagonist Fulvestrant on gene expression, osteogenic and chondrogenic differentiation were examined in vitro. Finally, in vivo experiments were performed in which Fulvestrant was administered subcutaneously to the mouse calvaria. Results showed that increased ERalpha but not ERbeta transcript abundance temporally coincided with posterofrontal suture fusion. The alphaERKO but not betaERKO mouse exhibited delayed posterofrontal suture fusion. In vitro, addition of 17-beta estradiol enhanced both osteogenic and chondrogenic differentiation in suture-derived mesenchymal cells, effects reversible by Fulvestrant. Finally, in vivo application of Fulvestrant significantly diminished calvarial osteogenesis, inhibiting suture fusion. CONCLUSIONS/SIGNIFICANCE: Estrogen signaling through ERalpha but not ERbeta is associated with and necessary for normal mouse posterofrontal suture fusion. In vitro studies suggest that estrogens may play a role in osteoblast and/or chondrocyte differentiation within the cranial suture complex

    Regular distribution of length heterogeneities within non-transcribed spacer regions of cloned and genomic rDNA of Saccharomyces cerevisiae.

    No full text
    A length difference of about 50 bp in the EcoRI fragment B of the rDNA from two different strains of Saccharomyces cerevisiae has been mapped in detail by sequencing of cloned fragments. This 2.4 kb EcoRI fragment contains the start of the 35S rRNA gene at one end and the 5S rRNA gene in the middle flanked by non-transcribed spacers, NTS1 and NTS2. The difference appeared as short deletions or insertions in five regularly spaced regions within the 1 kb NTS1, 3' to the 5S rRNA gene. The same regions of heterogeneities were displayed when all available sequence data of the NTS1 were compared. Four of the variable regions are located 160-170 bp apart, indicating that they might represent linker sequences between phased nucleosomes. Two variant clones, differing in the length of one subfragment of NTS1, were isolated for each strain. In both cases these represented the major variants among chromosomal NTS1 as revealed by sequencing of genomic fragments

    Ihh/Gli2 Signaling Promotes Osteoblast Differentiation by Regulating Runx2 Expression and Function

    No full text
    Genetic and cell biological studies have indicated that Indian hedgehog (Ihh) plays an important role in bone development and osteoblast differentiation. However, the molecular mechanism by which Ihh regulates osteoblast differentiation is complex and remains to be fully elucidated. In this study, we investigated the role of Ihh signaling in osteoblast differentiation using mesenchymal cells and primary osteoblasts. We observed that Ihh stimulated alkaline phosphatase (ALP) activity, osteocalcin expression, and calcification. Overexpression of Gli2- but not Gli3-induced ALP, osteocalcin expression, and calcification of these cells. In contrast, dominant-negative Gli2 markedly inhibited Ihh-dependent osteoblast differentiation. Ihh treatment or Gli2 overexpression also up-regulated the expression of Runx2, an essential transcription factor for osteoblastogenesis, and enhanced the transcriptional activity and osteogenic action of Runx2. Coimmunoprecipitation analysis demonstrated a physical interaction between Gli2 and Runx2. Moreover, Ihh or Gli2 overexpression failed to increase ALP activity in Runx2-deficient mesenchymal cells. Collectively, these results suggest that Ihh regulates osteoblast differentiation of mesenchymal cells through up-regulation of the expression and function of Runx2 by Gli2
    corecore